Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Sens Actuators B Chem ; 392: 134085, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: covidwho-20240517

RESUMEN

Sensitive and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a vital goal in the ongoing COVID-19 pandemic. We present in this comprehensive work, for the first time, detailed fabrication and clinical validation of a point of care (PoC) device for rapid, onsite detection of SARS-CoV-2 using a real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) reaction on a polymer cartridge. The PoC system, namely PATHPOD, consisting of a standalone device (weight less than 1.2 kg) and a cartridge, can perform the detection of 10 different samples and two controls in less than 50 min, which is much more rapid than the golden standard real-time reverse-transcription Polymerase Chain Reaction (RT-PCR), typically taking 16-48 h. The novel total internal reflection (TIR) scheme and the reactions inside the cartridge in the PoC device allow monitoring of the diagnostic results in real-time and onsite. The analytical sensitivity and specificity of the PoC test are comparable with the current RT-PCR, with a limit of detection (LOD) down to 30-50 viral genome copies. The robustness of the PATHPOD PoC system has been confirmed by analyzing 398 clinical samples initially examined in two hospitals in Denmark. The clinical sensitivity and specificity of these tests are discussed.

2.
Frontiers in bioengineering and biotechnology ; 10, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1999556

RESUMEN

The COVID-19 pandemic emphasized the importance of rapid, portable, and on-site testing technologies necessary for resource-limited settings for effective testing and screening to reduce spreading of the infection. Realizing this, we developed a fluorescence-based point-of-care (fPOC) detection system with real-time reverse transcriptase loop-mediated isothermal amplification for rapid and quantitative detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The system is built based on the Arduino platform compatible with commercially available open-source hardware–software and off-the-shelf electronic components. The fPOC system comprises of three main components: 1) an instrument with integrated heaters, 2) optical detection components, and 3) an injection-molded polymeric cartridge. The system was tested and experimentally proved to be able to use for fast detection of the SARS-CoV-2 virus in real-time in less than 30 min. Preliminary results of testing the performance of the fPOC revealed that the fPOC could detect the SARS-CoV-2 virus at a limit of detection (LOD50%) at two to three copies/microliter (15.36 copies/reaction), which was comparable to reactions run on a standard commercial thermocycler. The performance of the fPOC was evaluated with 12 SARS-CoV-2 clinical throat swab samples that included seven positive and five negative samples, as confirmed by reverse transcription–polymerase chain reaction. The fPOC showed 100% agreement with the commercial thermocycler. This simple design of the fPOC system demonstrates the potential to greatly enhance the practical applicability to develop a totally integrated point-of-care system for rapid on-site screening of the SARS-CoV-2 virus in the management of the pandemic.

3.
Front Cell Infect Microbiol ; 12: 856553, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1834360

RESUMEN

Loop-mediated isothermal amplification (LAMP) is being used as a robust rapid diagnostic tool to prevent the transmission of infectious diseases. However, carryover contamination of LAMP-amplified products originating from previous tests has been a problem in LAMP-based bio-analytical assays. In this study, we developed a Cod-uracil-DNA-glycosylase real-time reverse transcriptase LAMP assay (Cod-UNG-rRT-LAMP) for the elimination of carryover contamination and the rapid detection of SARS-CoV-2 in point-of-care (POC) testing. Using the Cod-UNG-rRT-LAMP assay, the SARS-CoV-2 virus could be detected as low as 2 copies/µl (8 copies/reaction) within 45 min of amplification and 2.63 ± 0.17 pg (equivalent to 2.296 × 109 copies) of contaminants per reaction could be eliminated. Analysis of clinical SARS-CoV-2 samples using the Cod-UNG-rRT-LAMP assay showed an excellent agreement with a relative accuracy of 98.2%, sensitivity of 97.1%, and specificity of 95.2% in comparison to rRT-PCR. The results obtained in this study clearly demonstrate the feasibility of the use of the Cod-UNG-rRT-LAMP assay for applications toward the POC diagnosis of SARS-CoV-2 and on-site testing of other pathogens.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pruebas en el Punto de Atención , ARN Viral/análisis , ARN Viral/genética , ADN Polimerasa Dirigida por ARN , SARS-CoV-2/genética , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA